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Abstract

Biological psychiatry is at an impasse. Despite several decades of intense research, 
few if any, biological parameters have contributed to a signifi cant improvement in the 
life of a psychiatric patient. It is argued that this impasse may be a consequence of an 
obsessive focus on mechanisms. Alternatively, a  risk-prediction framework provides a 
more pragmatic approach, because it aims to develop tests and measures which gener-
ate clinically useful information. Computational approaches may have an important 
role to play here. This chapter presents an example of a risk-prediction framework, 
which shows that computational approaches provide a signifi cant predictive advantage. 
Future directions and challenges are highlighted.

Biological Psychiatry: What Have You Done for Us Lately?

Biological psychiatry is in a crisis (Insel and Cuthbert 2015) for a number of 
different reasons. First, despite profound advances from molecular to systems 
neuroscience, these insights have had relatively little infl uence on practical 
psychiatry. Second, the development of new therapeutics, based on neuro-
science approaches to understand the pathophysiology of these illnesses, has 
stalled (Insel 2012). Third, in the development of a new diagnostic classifi ca-
tion for mental disorders (APA 2013), neuroscience had virtually no impact 
on contributing to the delineation and defi nition of the disorder categories. 
Fourth, there are no clinical tools for prognosis, diagnosis, and treatment 
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monitoring that are based on neuroscience approaches (Prata et al. 2014). 
Taken together, the fundamental insights into basic neuroscience have not 
translated into practical and clinical tools or treatment in psychiatry. Here we 
argue that computational approaches may play an important role in linking 
behavior (including  emotion and cognitive processing) to neural implementa-
tions of these processes in the brain.

The lack of impact that neuroscience has had on practical psychiatry may be 
due to several reasons. First, one might postulate that mental health conditions, 
which are complex constellations of symptoms and social conditions, are fun-
damentally not reducible to simple biological processes. This topic deserves a 
thoughtful discussion, which might focus on the level of reductionism possible 
when observing complex clinical phenomena. Such discussion, however, is 
beyond the scope of this chapter.

Second, we may not have suffi ciently developed technologies and ap-
proaches to map psychiatric diseases onto biological processes. This perspec-
tive is useful in generating incentives to develop new techniques in the fu-
ture to advance biologically based research in psychiatry. However, the lack 
of progress, despite decades of increasingly sophisticated technologies, might 
cast doubt over the argument that it is simply a “technology problem.”

Third, making biology useful for clinical psychiatry is an extremely diffi cult 
problem to solve. Given the complexity of the human brain—in terms of its 
amazing array of topographically organized units, which are highly intercon-
nected, the complex orchestration of molecular events that accompany even 
“simple” psychological processes, and the multilevel organization that oc-
curs from a molecular to a circuit level—this argument is hard to dispute. One 
would expect, however, that predictable relationships would have emerged by 
now between different levels of brain functioning and clinical problems.

Fourth, operational, institutional, and procedural aspects of biological re-
search in psychiatry have not provided the appropriate environment and incen-
tives within which biological approaches could be developed to solve clinical 
problems. This argument focuses on the “doing of biological psychiatry re-
search” and might need to be addressed by leaders of funding agencies, interest 
groups, and research organizations.

Lastly, by focusing the search on “mechanisms” that underlie psychiat-
ric illnesses, progress has been directed toward understanding dysfunctional 
processes and symptoms, rather than on clinical course and risk/protective 
factors. Implicit in this approach, however, is the assumption that mechanistic 
understanding will provide better diagnosis or treatment. We argue here that 
the current mechanistic viewpoint may be insuffi cient at this stage, and that 
a predictive framework may be equally fruitful to bring neuroscience to con-
tribute to clinical psychiatry. In this context, a computational approach can 
provide an important framework to link behavior to neural systems processes.
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Mechanisms

The notion of a  mechanism is tightly linked to causation, which can be defi ned 
as an antecedent event, condition, or characteristic that was necessary for the 
occurrence of the disease at the moment it occurred, given that other condi-
tions are fi xed (Rothman and Greenland 2005). Alternatively, a mechanism is, 
roughly speaking, a set of entities and activities that are spatially, temporally, 
and causally organized in such a way that they exhibit the phenomenon to 
be explained (Menzies 2012). Moreover, it has been highlighted that causal 
analyses aim to extract beliefs or probabilities that underlie observed data in 
both static and dynamic environments (Pearl 2010). However, causal relation-
ships in complex systems are diffi cult to establish. In the context of disease 
and environment, Hill (1965) suggested a number of criteria in an attempt to 
distinguish causal from noncausal associations: strength, consistency, specifi c-
ity, temporality, biological gradient (i.e., a dose-response curve), plausibility, 
coherence (i.e., consistency with the natural history and biology of the dis-
ease), experimental evidence, and analogy (i.e., similarities across diseases). 
A closer examination of examples of these criteria clearly shows that none 
of them are both necessary or suffi cient to establish a clear causal relation-
ship (Rothman and Greenland 2005). Moreover, there is clear evidence from 
carefully conducted clinical studies that causal relationships in psychiatry are 
diffi cult, if not impossible, to establish, even if many factors are considered. 
For example, Kendler used a propensity analysis approach to delineate covari-
ates from causal risk factors for depression (Kendler and Gardner 2010). He 
concluded that dependent  stressful life events, which were found to be most 
strongly associated with  depression onset, had only a weak, if any, causal ef-
fect on the emergence of a depressive episode in the subsequent year. Further, 
a comprehensive analysis of the factors that infl uence the onset of a depressive 
episode shows that these factors cut across many different levels (genetic, psy-
chological, social, economic), are highly interconnected, and differ between 
males and females (Kendler and Gardner 2014). These, and other results, led 
Kendler (2012:385) to conclude that “to develop an etiologically based  nosol-
ogy for psychiatric disorders is deeply problematic.” Finally, in the develop-
ment of increasingly sophisticated molecular approaches to understand psychi-
atric disorders, a silent assumption has been that one needs a more refi ned scale 
to clearly differentiate the pathophysiological processes that underlie these 
disorders. However, in a recent theoretical analysis of causal relationships be-
tween variables, Hoel et al. (2013) emphasized that the continued search for 
the “molecular cause” of a psychiatric illness may be fundamentally fl awed. 
Specifi cally, they showed that one can construct interacting systems such that 
causal relationships emerge on a macro level but may not hold on a micro 
level and vice versa. Taken together, these fi ndings suggest that at this stage a 
mechanistic emphasis to understanding mental disorders may delay neurosci-
ence from making an impact for psychiatry.
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We do not propose to do away completely with causal analyses, which are 
at the basis of mechanistic understanding of a process. Our standard statistical 
approaches are insuffi cient to clearly differentiate causal from noncausal asso-
ciations. Recent attempts have been made to generate a more reliable mecha-
nistically based quantitative theoretical framework (Pearl 2009b). Specifi cally, 
Pearl (2009a) contrasts standard statistical analyses (which aim to infer associ-
ations among variables and estimate beliefs, or probabilities of past and future 
events) and updates those probabilities in light of new evidence or new mea-
surements with causal analysis. Causal analysis aims to infer not only beliefs 
or probabilities under static conditions, but also the dynamics of beliefs under 
changing conditions (e.g., induced by treatments or external interventions). 
Critical for this distinction, however, is to differentiate associational concepts; 
that is, any relationship that can be defi ned in terms of a joint distribution of 
observed variables against a causal concept, which is any relationship that can-
not be defi ned from the distribution alone (randomization, infl uence, effect, 
confounding, “holding constant,” disturbance, spurious correlation, faithful-
ness/stability, instrumental variables, intervention, explanation, attribution). It 
is important to emphasize that in psychiatry, it is very diffi cult to isolate causal 
relationships. Nevertheless, by implementing these advanced mathematical 
tools, we may be better able to delineate causation and, as a consequence, 
mechanistic frameworks for psychiatry. In the interim, however, a complemen-
tary framework may yield productive results.

Risk-Prediction Framework

One complementary approach to the sometimes elusive search for mechanisms 
is to embed a program of research into a risk-prediction framework. Risk-
prediction models use predictors (covariates) to estimate the absolute prob-
ability or risk that a certain outcome is present (diagnostic prediction model) 
or will occur within a specifi c time period (prognostic prediction model) in an 
individual with a particular predictor profi le (Moons et al. 2012b). The compo-
nents of risk prediction (Gerds et al. 2008) consist of (a) a sample of n subjects, 
(b) a set of k markers obtained for each subject, (c) an individual subject status 
at some later time t, which can be a scalar or vector variable, and (d) a model 
which takes the sample and markers and assigns a probability p of the status at 
time t for each individual.

To be useful, a prediction model must provide validated and accurate esti-
mates of the risks; the uptake of those estimates should improve subject (self-) 
management and therapeutic decision making, and consequently, (relevant) 
individuals’ outcomes and cost-effectiveness of care (Moons et al. 2012a). 
Risk-prediction models can be derived with many different statistical ap-
proaches. To compare them, measures of predictive performance are derived 
from receiver operating characteristic (ROC) methodology and probability 
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forecasting theory. These tools can be applied to assess single markers, multi-
variable regression models, and complex model selection algorithms (Gerds et 
al. 2008). The outcome probabilities or level of risk and other characteristics of 
prognostic groups are the most salient statistics for review and perhaps meta-
analysis. Reclassifi cation tables can help determine how a prognostic test af-
fects the classifi cation of patients into different prognostic groups, hence their 
treatment (Rector et al. 2012).

According to Cook (2007), one can compare the global model fi t using a 
measure such as the Bayes’s information criterion, in which lower values in-
dicate better fi t and a penalty is paid if the number of variables is increased. 
Moreover, one can compare general indices of calibration (e.g., the Hosmer–
Lemeshow statistic, which compares the observed and predicted risk within 
categories) and discrimination (e.g., the c-statistic). In addition, if the overall 
fi t for one model is better than another, but general calibration and discrimina-
tion are similar, one can assess whether the fi t would be better among individu-
als of special interest. This would help to determine how many individuals 
would be reclassifi ed in clinical risk categories and whether the new risk cat-
egory is more accurate for those reclassifi ed. Finally, one can assess utility of 
the risk-prediction model if it is based on an invasive or expensive  biomarker, 
by determining whether a higher or lower estimated risk would change treat-
ment decisions for the individual subject.

This general approach is similar to one proposed by Pencina and D’Agostino 
(2012), who argued that the incremental predictive value of a new marker 
should be based on its potential in reclassifi cation and discrimination. In that 
sense, new potentially predictive (bio)markers should be assessed on their 
added value to existing prediction models or predictors, rather than simply be-
ing tested on their predictive ability alone (Moons et al. 2012b). The ultimate 
test of the effectiveness of a risk-prediction tool, like any other intervention, is 
a randomized clinical trial in which groups of doctors are randomized to use 
the tool in addition to usual care versus usual care alone (Scott and Greenberg 
2010). In summary, the risk-prediction model framework has a number of ad-
vantages over a mechanistic framework: (a) a clear utilitarian approach, (b) 
sound statistical background, (c) a framework of iterative improvement, and 
(d) the ability ultimately to connect to and coexist with a mechanistic under-
standing of psychiatric disease. In the context of computational approaches, 
these aspects of the risk-prediction model framework provide clear guidance 
for the modeling approach: Can the underlying computational approach con-
tribute substantially to the predictive value of the model?

 Machine learning (Hastie et al. 2001) consists of a set of tools (e.g., sup-
port vector machines,  random forest, recommender systems) that uses large 
data to understand the underlying structure (James et al. 2013). One can dif-
ferentiate machine-learning tools into those that are supervised (i.e., models 
derived from inputs and outputs that are built for prediction or estimation) 
and unsupervised (i.e., models used to extract relationships and structure from 
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multidimensional data). Machine-learning tools have found their way into the 
medical fi eld for a large number of different applications: from the predic-
tion of healthcare services (Padman et al. 2007) to clinical predictions of the 
progression of  Alzheimer disease (Kohannim et al. 2010; Maroco et al. 2011). 
Random  forest is one  machine-learning tool that uses predictor variables 
to classify members of a sample into categories (e.g., relapse or abstinent). 
The forest is constructed from a multitude of decision trees (Breiman 2001). 
Whereas a single decision tree is susceptible to noise, the average of many 
trees, obtained by a forest, is not, so long as the trees are uncorrelated. A ran-
dom forest performs as well or better than alternative classifi cation techniques 
in terms of accuracy and robustness; even in the presence of noise, the model 
does not overfi t to a given sample (Breiman 2001). One potential downside 
of random forest modeling is the black box nature of the model (Strobl et al. 
2009). In fact, as Breiman (2001:23) states: “a forest of trees is impenetrable 
as far as simple interpretations of its mechanism go.” Thus, similar to other 
machine-learning approaches, predictive utility may, in some circumstances, 
come at a cost of simple mechanistic interpretations.

Computational Approaches 

While the above examples of predictive methods can be applied to all types 
of predictors (e.g.,  self-report and behavioral measures, including indicators 
of clinical severity and symptom types), we propose that they may be most 
powerful when used in combination with sophisticated inference models of 
beliefs and behavior. For instance, such  generative models may be used at 
a fi rst stage analysis to infer latent mental processes and states (associated 
with individual-level parameters). Such inferred states may include individu-
als’ beliefs (e.g., about hidden reward rates of various choice options in the 
environment) or their decision policies (i.e., functions describing how they 
translate their expectations/beliefs about hidden variables into action). Recent 
contributions from machine learning and neuroeconomic research have high-
lighted several different computational approaches that can be used to infer 
underlying processing states from observed behavior. In our group, we have 
focused on two techniques, described below:  optimal control and  Bayesian 
ideal observer models.

Optimal Control

Inverse  optimal  control is a computational approach used to infer an individ-
ual’s reward function of a  goal-directed motor task, given observed behav-
ior. Optimal control theory has been show to be an effective computational 
framework to explain human movements in continuous time (Todorov and 
Jordan 2002). This framework is particularly valuable when examining motor 
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behavior; however, it can be extended readily to help understand the reward 
functions that drive motor behavior as part of a cognitive or affective para-
digm. In this context, motor control in a goal-directed task is a dynamic pro-
cess of sensorimotor integration, in which the brain takes sensory information, 
which includes paradigmatically specifi c instructions, and uses it to make con-
tinuous motor actions. Optimal control theory frames this dynamic process in a 
feedback control loop: the optimal controller estimates the current state at time 
t, produces a motor command based on the goal and keeps an efference copy 
(i.e., the expected outcome of the motor command) as the state estimator, then 
sends the motor command to muscles to generate the movement. The agent is 
thought to select actions which optimize performance on a task—the critical 
component of optimal control theory. In particular, the performance criterion 
is defi ned as a reward function that includes task-related performance measure 
and action cost. For example, in a task that instructs subjects to drive to a lo-
cation A as quickly as possible, the performance measure can be the stopping 
distance to A; the action cost can be the accumulated effort of accelerating and 
decelerating controls. Individual differences are thought to emerge because 
subjects may have different target stopping distances and different weights to 
assess the ratio of the closeness to the target location over the action cost. The 
latter ratio defi nes the amount of effort one is willing to spend to achieve the 
intended stopping distance. Taken together, there are three components in the 
optimal control framework: (a) a dynamic system that describes how the states 
of the system evolve based on the action input, (b) an action policy that deter-
mines which action to take given the current state, and (c) a  reward function 
that specifi es the goal of this task (balance between goal state and action cost). 
A forward optimal control model generates a sequence of (optimal) actions, 
which maximizes the reward in the task. The goal of inverse optimal control 
model is to uncover the reward function assuming the optimality in observed 
action sequences. Proposed by Kalman (1964), inverse optimal control has 
been applied to study apprenticeship learning (Abbeel and Ng 2004), drivers’ 
intention in simulated highway driving, and parking lot navigation Abbeel et 
al. (2008).

Using an optimal control framework (Figure 14.1) to study the behavior-
al processes and their dysfunction in subjects with psychiatric disorders has 
three main advantages. First, individuals with psychiatric disorders have been 
shown to have sensorimotor defi cits, such as psychomotor disturbance in de-
pressed individuals (Sobin and Sackeim 1997), which may have signifi cant 
effects on the performance of effortful cognitive or affective tasks. In optimal 
control theory, sensory delay (i.e., the latency of an individual to respond to a 
visual or auditory stimulus) and motor delay (i.e., the speed with which an ac-
tion plan can be carried out once the individual has selected a motor plan) can 
be incorporated in the dynamic system.

Second, individuals with certain psychiatric disorders may have altered re-
ward processing; for example, individuals with depression are more sensitive 
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to punishment than to reward (Must et al. 2006; Eshel and Roiser 2010). The 
imbalance of reward and punishment sensitivity in these subjects may affect 
the goal state, which may differ substantially from the experimenter-instructed 
target state. In optimal control theory, the goal state is a parameter in the re-
ward function that corresponds to the individual’s intended state of the object 
in control (e.g., the position and velocity of a car in a driving task). The closer 
the current state is to the goal state, the higher the reward.

Third, individuals with psychiatric disorders may lack the motivation (i.e., 
the amount of effort to spend to achieve the subjective goal state) to perform 
the task (Treadway and Zald 2011; Der-Avakian and Markou 2012). In optimal 
control theory, motivation is also a parameter in the  reward function, which 
measures the ratio of the weights between the accuracy to achieve goal state 
and the action cost in the task. The higher the motivation, the more effort one is 
willing to spend to achieve high accuracy toward the intended goal state. Taken 
together, with the appropriate experimental manipulation, we can investigate if 
individuals can learn and adapt their action policies to different environments 
by changing the dynamical system, and if their reward function will change 
and thus improve their performance by changing the feedback provided (e.g., 
reward vs. punishment).

 Bayesian Ideal Observer Models

A second computational framework which may help to extract predictive and 
potentially causative relationships in patients with psychiatric disorders is the 

Reward function
(goal state; motivation 

to achieve the goal state)

Inverse optimal control

Optimal control

MovementOptimal
controller

Dynamical
systems

Sensory
observation

State
estimator

Motor
command

Efference
copy

Figure 14.1 This schema shows the basic components of the inverse optimal control 
framework. Each component can be estimated from a subject’s motor data.
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Bayesian ideal observer model or  dynamic Bayesian model (DBM). DBM pro-
vides a computational framework which enables one to generate fi ne-grained 
quantifi cation of  emotion and cognitive processing as well as their interactions. 
The approach is to divide the observed behavior into several subprocesses, 
which can be submitted to test subtle hypotheses about changes in optimizing 
behavior. Similar to the inverse optimal control theory, DBM shares the basic 
assumption that changes in behavior observed in individuals with psychiatric 
disorders are a consequence of an altered optimization of available actions 
within the constraints of specifi c affective and cognitive processing dysfunc-
tions. In particular, DBM is based on the notion that an individual has underly-
ing beliefs and expectations about the situation at hand. This approach aims to 
quantify an individual’s belief and expectation about their environment as a 
function of behavioral context and experienced choices and outcomes. DBM 
models provide a quantitative and explicit way to delineate how the brain pro-
cesses complex environments, and how the breakdown of this process can con-
tribute to the development of psychiatric disorders. Using this approach, we 
infer otherwise unknown beliefs in individuals regarding upcoming events and 
how such beliefs are updated based on past events experienced by the observer. 
This may be particularly important in a context of a risk-prediction model, 
when target populations exhibit very subtle or nondetectable behavioral differ-
ences on standard behavioral paradigms.

One example that shows how a simple experimental paradigm can be used 
to extract subtle but important cognitive control differences in healthy indi-
viduals and psychiatric subjects is the application of DBM to  inhibitory control 
using the stop signal task. Specifi cally, Yu and colleagues used DBM to capture 
behavioral adjustments on a trial-by-trial basis of stopping behavior (Shenoy et 
al. 2010; Shenoy and Yu 2011; Ide et al. 2013). This model is based on the as-
sumption that an individual updates the prior probability of encountering Stop 
trials, P(stop), on a trial-by-trial basis, based on trial history; it adjusts decision 
policy as a function of P(stop), with systematic consequences for Go response 
times and Stop accuracy in the upcoming trial. An optimal response when an 
individual assumes that it is more likely to encounter a Stop trial—that has a 
higher P(stop)—is to slow one’s response latency (i.e., exhibit a slower Go 
response time), which would result in a higher likelihood of correctly stopping 
on a Stop trial. This adjustment has been shown in two different experiments 
in healthy subjects (Ide et al. 2013; Harlé et al. 2014). To model the trial-
by-trial adjustment of prior expectations, we used a Bayesian  hidden Markov 
model adapted from the DBM (Yu and Cohen 2009; Ide et al. 2013). The mod-
el makes the following assumptions about subjects’ internal beliefs regarding 
task structure: on each trial k, there is a hidden probability rk of observing a 
Stop signal (sk = 1 for Stop trial) and a probability 1 – rk of observing a Go trial 
(sk = 0); rk is the same as rk–1 with probability α and is resampled from a prior 
beta distribution p0(r) with probability 1 – α. The predictive probability of trial 

From “Computational Psychiatry: New Perspectives on Mental Illness,”  
A. David Redish and Joshua A. Gordon, eds. 2016. Strüngmann Forum Reports, vol. 20, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03542-2.



268 M. P. Paulus et al. 

k being a Stop trial, Pk(stop) = P(sk=1 | sk–1), where sk = (s1, ..., sk) is a vector 
of all past trial outcomes, 1 for Stop trials and 0 Go trials, can be computed as:

P s s P s r p r s dr

r p r s dr r s

k k k k k k k

k k k k k k

=( )= =( ) ( )

= ( ) =

−−

− −

∫
∫

1 1 11

1 1 .
(14.1) 

Predictive probability of seeing a Stop trial, Pk(stop), is the mean of the pre-
dictive distribution p(rk|sk-1), which, by marginalizing over the uncertainty of 
whether rk has changed from the last trial, becomes a mixture of the previous 
posterior distribution and a fi xed  prior distribution, with α and 1 − α acting as 
the mixing coeffi cients, respectively:

p r s p r s p rk k k k k− − −( )= ( )+ −( ) ( )1 1 1 01α α . (14.2) 

Posterior distribution over Stop trial frequency is updated according to 
 Bayes’s rule:

p r s P s r p r sk k k k k k( ) ( ) ( )−α 1 . (14.3) 

The DBM model further assumes a positive linear relationship between trial-
wise P(stop) and reaction times at the individual level. That is, on a given trial, 
the higher the expected likelihood of encountering a Stop signal, the more a 
person should slow down to avoid making a Go error. For each parameter set-
ting (i.e., each pair of alpha and the prior distribution mean), the correspond-
ing P(stop) sequence can be inferred, and linear regression can be used to 
determine the optimum parameter values providing the strongest correlation 
coeffi cient or R square coeffi cient between P(stop) and reaction times. In our 
previous work, we have found that subjects’ prior resampling rates to be best 
captured with alpha values between .6 and .8 (Shenoy and Yu 2011; Ide et al. 
2013; Harlé et al. 2014).

An Example Study: Predicting the Emergence 
of Problem Stimulant Use

While signifi cant  executive defi cits have been demonstrated in chronic  stimu-
lant dependence (Salo et al. 2002; Monterosso et al. 2005; Hester et al. 2007; 
Tabibnia et al. 2011), only subtle behavioral impairments in error monitoring 
and inhibitory control have been observed in individuals at risk for stimulant 
dependence (Colzato et al. 2007; Reske et al. 2011). Thus, in the following 
example, we applied  DBM to the analysis of event-related functional magnetic 
resonance imaging (fMRI) data associated with baseline inhibitory function 
during a stop signal task to predict clinical status three years later. Previously, 
healthy volunteers (Ide et al. 2013) and individuals at risk for stimulant  use 
disorder (Harlé et al. 2014) were shown to adapt their response strategy in 
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this inhibitory control paradigm. Thus, we hypothesized that computational 
models might help identify neural substrates that contribute to subtle inhibitory 
defi cits. Such computational neural variables were hypothesized to perform 
signifi cantly better than other variables, such as noncomputational task-based 
brain activity and clinical measures (e.g., cumulative drug use), in predicting 
long-term clinical status (Harlé et al. 2014).

We recruited occasional stimulant users (OSUs) from the student popula-
tion of different local universities. OSUs were defi ned primarily as having (a) 
at least two off-prescription uses of  cocaine or prescription stimulants (am-
phetamines and/or methylphenidate) over the past six months and (b) no evi-
dence of lifetime stimulant dependence. Participants completed a baseline in-
terview session to evaluate clinical diagnoses and determine current patterns of 
 drug use as well as a neuroimaging session that examined brain and behavior 
responses during decision making; they completed a stop signal task while be-
ing scanned. We were able to follow these OSUs for three years, after which 
they completed another standardized interview (phone or in-person) which 
examined the extent of drug use over the three-year interim period (using the 
SSAGA II). Two groups of interest were identifi ed: problem stimulant users 
(PSUs) and desisted stimulant users (DSUs). PSUs were a priori defi ned by 
(a) continued stimulant use since baseline interview and (b) endorsement of 2+ 
symptoms of  DSM-IV amphetamine and/or cocaine abuse and/or dependence 
criteria occurring together 6+ contiguous months since the initial visit. DSUs 
endorsed (a) no 6-month periods with 1+ stimulant uses and (b) no symptoms 
of interim stimulant abuse or dependence.

Using a split-sample approach, we fi rst identifi ed potential predictive neural 
regions with voxel-wise robust logistic regressions to predict three-year fol-
low-up status (coded 1 = PSU vs. 0 = DSU) in a randomly selected “training” 
subset of our sample. The remaining “test” subset was used to assess the rela-
tive predictive power of the activation clusters identifi ed with the training sam-
ple by using  random forest  analysis (Breiman 2001). In this study, we ran three 
random forest analyses, each with a distinct set of baseline variables to com-
pare the overall performance of (a) drug-use measures (total uses of stimulants, 
cocaine, and marijuana, based on self-report), (b) categorical fMRI regressors 
(task-based contrasts such as Stop vs. Go, Stop Success vs. Stop Error), and 
(b) Bayesian/computational fMRI regressors, respectively. To construct those 
regressors, we fi rst convolved three types of trials (Go, Stop Success/SS, and 
Stop Error/SE) with a canonical hemodynamic response function in a general 
linear model (GLM). Each of these predictors were entered both as linear re-
gressors and parametrically modulated by trial-level P(stop) estimates. This 
model allowed us to isolate neural activations associated with both trial type 
alone (i.e., categorical regressor) and P(stop). Thus, after deconvolution, this 
model included six task regressors. Three were categorical: Go, SS, SE. Three 
were model-based parametric: Go × Pk(stop), SS × Pk(stop), SE × Pk(stop). 
A second GLM was created with trial-wise Bayesian   signed prediction error 
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(SPE), defi ned as Outcome – P(stop), and unsigned prediction error (UPE), 
defi ned as |Outcome – P(stop)|, included as parametric regressors of interest. 
Individual subjects’ percent signal change (%SC) scaled beta weight values 
for fi ve regressors; contrasts of interest from these two GLM models were 
extracted and used as independent variables in the prediction analyses. The 
categorical regressors included two contrasts: (a) (Stop – Go), that is, (SS + 
SE)/2 – Go and (b) (SE – SS). The Bayesian regressors included three compu-
tational predictors: (a) P(stop), that is, ½*Go × Pk(stop) + ¼ *SS × Pk(stop), + 
¼*SE × Pk(stop); (b) UPE; and (c) SPE. For full description of these fi rst-level 
fMRI analyses, see Harlé et al. (2014).

Based on logistic regressions in the training sample, predictors in the full 
model included activations extracted from 21 ROIs identifi ed with robust lo-
gistic regressions, including three ROIs for trial type-independent P(stop) ac-
tivation, six ROIs associated with Bayesian UPE activation—UPE: Outcome 
– P(stop)—and twelve ROIs associated with SPE activation—SPE: |Outcome 
– P(stop)|. Based on  random  forest analyses in the test sample, we found that:

1. no variable met criteria for inclusion in the drug-use model, which had 
an overall accuracy of 52%;

2. only one variable met criteria for inclusion in the fMRI categorical 
predictor model (i.e., SE – SS contrast activation in the rostral  anterior 
cingulate cortex), but with an overall accuracy of 64%, which was not 
signifi cantly different statistically from the no-predictor model based 
on response rate alone; and

3. four variables met criteria for inclusion in the fMRI computational 
predictor model, including UPE activation in right thalamus as well 
as SPE activation in right anterior insula/inferior frontal gyrus, in the 
right superior medial prefrontal cortex/dorsal anterior cingulate cortex 
(BA32), and in right caudate (BA25).

Notably, this fi nal model yielded an overall accuracy of 74%, which represents 
a statistically signifi cant improvement in accuracy from the model based on 
response rate alone.

The utility of the computational approach can be most easily displayed us-
ing a  Bayesian nomogram (Figure 14.2). The vertical axis of the left-hand side 
of the nomogram shows the prior probability of developing problem use, or the 
proportion of the total sample that showed problem use. The vertical axis of 
right-hand side shows the posterior probability of problem use given a positive 
or a negative test result, respectively. The vertical axis in the center displays 
the positive or negative likelihood ratio, which is the most important character-
istic of a test in terms of linking the knowledge before applying the test to the 
knowledge once the test has been conducted and found to be either positive or 
negative. In this instance, we used the random forest model as the basis for the 
testing procedure. The upper and lower brackets around the central estimate 
represent the 95% confi dence interval of the post-test probability, providing 
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a graphical means of indicating whether the test measurably improved our 
knowledge; that is, yielded a higher or lower post-test probability without the 
confi dence interval including the pretest probability. Thus, when the 95% con-
fi dence intervals do not intersect, positive and negative tests are statistically 
signifi cantly different.

For all four computational predictors, larger neural responses negatively 
correlated with  Bayesian  prediction errors were associated with a higher like-
lihood to be categorized in the PSU group three years later. Specifi cally, for 
every standardized unit increase in UPE deactivation in right thalamus, one 
was about three times as likely to develop a future stimulant-use disorder (odds 
ratio = 3.45, p < .05). In addition, an individual was two to three times as likely 
to be categorized in the PSU group for every standardized unit increase in 
SPE deactivation in medial prefrontal cortex/ anterior cingulate cortex (odds 
ratio = 2.44, p < .05), anterior insula/ inferior frontal gyrus (odds ratio = 3.19, 
p < .05), and caudate (odds ratio = 3.02, p < .05). To summarize visually the 
relative predictive power of the three predictive models considered, we used 
bootstrapped robust logistic regressions to produce cumulative ROC curves 
associated with each added layer of predictor types. As seen in Figure 14.3, 
the computational predictors added in the last layer (black line) signifi cantly 
increased accuracy, including both sensitivity and specifi city.
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Figure 14.2  Bayesian nomogram for (a) drug-use measures, (b) categorical fMRI 
activation measures, and (c) Bayesian model-based activation measures. The posi-
tive likelihood ratio (gray) and negative likelihood ratio (black) show that the test 
based on the Bayesian ideal observer model clearly provide the best separation. For 
example, based on a base rate of approximately 57%, a positive test indicated a 74% 
chance of becoming a problem user, whereas a negative test reduces the chance to 
approximately 28%.
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In this study we sought to determine whether the combination of functional 
neuroimaging and computational approaches to behavior are able to generate 
predictions that can help to determine whether an individual will progress to 
problem use. Using the combination of  Bayesian ideal observer model, stop 
signal task as a measure of  inhibitory control, and fMRI imaging, we show 
that those individuals who demonstrated greater neural processing, related to 
a Bayesian prediction error, are more likely to develop a future stimulant-use 
disorder over the subsequent three years. For this, we used a Bayesian ideal 
observer model to quantify an individual’s belief about the likelihood of an 
upcoming Stop trial (i.e., the person’s probabilistic expectation of having to 
mount an inhibitory response during a stop signal task). Importantly, these data 
were collected in individuals at risk for stimulant-use disorder three years prior 
to the assessment of the outcome (i.e., whether the subject would progress to 
problem use or desist using). Cross-validated robust regression and  random 
forest  analyses showed that neural responses associated with Bayesian mod-
el-inferred prediction errors (representing the trial-wise discrepancy between 
expectation of a Stop trial and actual trial outcome) in right  anterior cingulate 
cortex, anterior insula, caudate, and thalamus most robustly predicted three-
year clinical status (i.e., meeting criteria for stimulant-use disorder vs. desist-
ed-use status). These computational neural variables signifi cantly contributed 
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Figure 14.3 Receiver operator curve for three different predictor models. Lifetime 
stimulant use is indicated by the dotted black line; lifetime stimulant use plus fMRI and 
behavioral measures in gray; and lifetime stimulant use, fMRI, and Bayesian model 
parameters are shown in black. The Bayesian ideal observer model parameters add 
signifi cantly to increased sensitivity and specifi city of the model.
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predictive validity above the base rate, which was not the case for other base-
line predictors a priori thought to be promising, such as reported lifetime  drug 
use or non-model-based neural predictors. Therefore, this study shows that, in 
principle, a Bayesian cognitive model applied to an event-related neural activ-
ity can be used to predict long-term  clinical outcome. Taken together, these 
results are consistent with the notion that the combination of functional neuro-
imaging and computational modeling can provide better predictions of future 
clinical states.

Future Directions

This example is one among a series of emerging studies in neurology and 
psychiatry that use  machine-learning approaches in the context of risk-pre-
diction models to generate individual-level predictions (Perlis 2013; Moradi 
et al. 2015). The emphasis of computational approach, up to now, has been 
on improving a  mechanistic understanding of behavior in complex situations. 
For example,  temporal difference models (Schultz et al. 1997) provide a clear 
and convincing framework for the acquisition of  reward (Daw and Touretzky 
2002) and aversive learning (Iordanova 2009) in both animals (Schultz and 
Dickinson 2000) and humans (Klein-Flugge et al. 2011). The extension to 
Bayesian models has been based on the notion that humans utilize not only 
information about experienced averages but also about the underlying distribu-
tion; that is, the degree of uncertainty associated with the experience (Behrens 
et al. 2007). The use of computational models provides a powerful technique 
to disambiguate processes that result in an observable behavior and can thus 
be used to make inferences about processes which constrain behavior in a way 
that is observed in psychiatric populations (Huys et al. 2011).

There are, however, several caveats that one must keep in mind when apply-
ing these models in psychiatry. First, our diagnostic descriptions of patients are 
at best initial phenomenological approximations of heterogeneous subgroups 
of individuals (Insel and Cuthbert 2015). Consequently, behavioral dysfunc-
tions are likely to result from different underlying pathologies associated with 
different computational processes. In other words, it is unlikely that individu-
als with anxiety or depression will show a uniform computational dysfunction.

Second, psychiatric illnesses are a mixture of long-range dysfunctions, best 
captured by trait variables and momentary dysregulation, which are assessed 
using state measures. Moreover, there may be different stages of psychiatric 
illnesses based on the  recovery from the illness process itself. For example, 
individuals who show substance-use disorder might undergo prolonged recov-
ery of function, which may result in changes of the computational process that 
guides the decision making.  Thus, it will be important to examine psychiatric 
populations at different  stages of illness to better understand the dynamics of 
the underlying process dysfunction.
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Third, Paulus (2007) has previously proposed that  decision making is a ho-
meostatic process closely related to the physiological state of the body. As a 
consequence, computational processes that underlie the selection of an option 
might be sensitively affected by the individual’s body state. For example, deci-
sion making focused on the selection of food items are highly dependent on 
the satiety state of the individual (Haase et al. 2009). Therefore, it should be 
clear that computational processes may need to be examined in the context of 
different motivational states. Taken together, the use of computational models 
in psychiatry to explain the underlying mechanism of behavior is promising, 
but at an early stage and will require many future studies to delineate some of 
the issues raised above.

Alternatively, computational approaches may have a more immediate impact 
on psychiatry by providing better prediction models. In this context, the value 
of the computational approach is to modify the receiver operator statistic that 
determines where to set a cut off for a positive or negative test, or to improve 
the likelihood ratio of the test being developed. The goal here would be to use 
underlying  belief updating models to improve the prediction of future behavior 
or future clinical outcomes. This approach does not rely on a particular disease 
category (i.e., whether an individual has  major depressive disorder, dysthymia, 
or bipolar depression). Instead, the risk-prediction model framework aims to 
exploit individual differences to make better predictions. However, several is-
sues need to be taken into account:

Clinically relevant and robust predictions require large data sets. Currently, 
most studies, with a few exceptions (Whelan et al. 2014), are based on rela-
tively small samples. Thus, it will be important to collect data sets that are 
based on “real” patient populations of suffi cient size to be able to make robust 
predictions.

In addition, it is unclear at which level one is best able to delineate a caus-
al pathway to the pathology in psychiatric illnesses. The  Research Domain 
Criteria approach (Insel et al. 2010) relies on the assumption that more ba-
sic molecular levels will eventually result in a better causal prediction of the 
emergence and maintenance of psychiatric illnesses. This assumption may, 
however, be deeply fl awed, as greater clarity at the molecular level might not 
necessarily yield stronger causal relationships (Hoel et al. 2013). In fact, the 
presence of a romantic relationship in an adolescent’s life resulted in the single 
strongest predictor of the emergence of binge drinking (Whelan et al. 2014), 
whereas genetic and neuroimaging markers were only weakly predictive. The 
use of a risk-prediction framework will act as an arbiter of what is the best 
information to be clinically useful. Moreover, it may also act as a pointer to 
show us where to carve nature at its joints. Computational approaches might 
well play an important role here, but we are still early in this endeavor.
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